References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1985). Eur. Crystallogr. Meet. 9, 426.
- Colpaert, F. C., Niemegeers, C. J. E. & Janssen, P. A. J. (1982). J. Pharmacol. Exp. Ther. 221, 206-214.
- Domenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 24, 2283-2286.
- Hermecs, I., Vasvari-Debreczy, L. & Simon K. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1287–1289.

McArdle, P. (1993). J. Appl. Cryst. 26, 752.

- Main, P., Fiske, S. J., Hull, S. J., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1982). Cryst. Struct. Commun. 11, 375–379.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. & Flack, H. (1976). *The XRAY76 System*. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- Stoe & Cie (1992). *REDU4. Data Reduction Program.* Version 7.03. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 535-536

Tetraethylammonium Perchlorate at 150 K

JUSSI KIVIKOSKI, JUDITH A. K. HOWARD, PATRICIA KELLY AND DAVID PARKER

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

(Received 25 April 1994; accepted 21 July 1994)

Abstract

Tetraethylammonium perchlorate, $C_8H_{20}N^+$.ClO₄⁻, has been crystallized and its crystal structure is reported.

Comment

Both the tetraethylammonium cation and the perchlorate anion are widely used counterions. During the course of work aimed at understanding the structure of complexes formed between tetraalkylammonium ions and lipophilic cyclodextrins (Bates, Kataky & Parker, 1994*a*,*b*), we accidentally managed to co-crystallize tetraethylammonium with perchlorate to form the title compound, (I). Views of the ions and the unit-cell contents are shown in Figs. 1 and 2, respectively.

The tetraethylammonium ion has S_4 symmetry and its shape is very regular. The symmetry, bond lengths and bond angles agree with those reported previously [for example, by Vicente, Knop, Linden, Cameron & Robertson (1988)]. Two of the O atoms in the perchlorate ion, O2 and O3, are disordered with refined site occupancies of 0.71 (1) and 0.74 (1), respectively. As a result, the tetrahedral shape of the ion is slightly distorted. The bond lengths and angles still have acceptable values. In the crystal lattice the ions are stacked in the direction of the *b* axis. The shortest Cl···N distance is 4.795 (3) Å and the shortest O···N distance is 4.033 (7) Å. There are no significantly short distances between the ions, hence the crystal lattice is held together by weak electrostatic forces.

Fig. 1. A view of the cation and anion showing the numbering scheme (O atom disorder and H atoms not shown). Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. The unit-cell contents viewed down b.

Experimental

Crystal data $C_8H_{20}N^+.CIO_4^ M_r = 229.70$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1995

C₈H₂₀N⁺.ClO₄⁻

Monoclinic	Cell parameters from 25	C1104	1.416 (4)	C2—C22	1.528 (7)
Cc	reflections $\theta = 8-15^{\circ}$ $\mu = 0.314 \text{ mm}^{-1}$ T = 150 (2) K Plate $0.05 \times 0.50 \times 0.60 \text{ mm}$ Colourless	N1-C1	1.518 (5)	C3—C33	1.503 (8)
a = 12514(5) Å		N1—C2	1.519 (5)	C4—C44	1.513 (7)
h = 7.323 (A) Å		O1—C11—O2	114.5 (4)	C2N1C3	108.3 (3)
D = 7.433 (4) A		01-C11-O3	108.0 (3)	C1-N1-C4	108.5 (3)
c = 13.956 (6) A		O2-C11-O3	107.6 (6)	C2-N1-C4	108.5 (3)
$\beta = 114.86 \ (3)^{\circ}$		01C11O4	110.3 (3)	C3—N1—C4	111.5 (3)
$V = 1178 (1) Å^3$		O2Cl1O4	113.9 (4)	NI-C1-C11	114.8 (4)
7 - 4		O3Cl1O4	101.6 (4)	N1-C2-C22	115.3 (4)
L = 4		C1-N1-C2	111.7 (3)	N1-C3-C33	114.7 (4)
$D_x = 1.30 \text{ Mg m}^{-3}$		C1—N1—C3	108.3 (3)	N1-C4-C44	115.1 (4)
		C11-C1-N1-C2	56.1 (5)	C33-C3-N1-C1	63.2 (5)
Data collection		C11-C1-N1-C3	175.3 (4)	C33-C3-N1-C2	-175.5 (4)
Rigaku AFC-68 four-circle	$R_{int} = 0.0273$ $\theta_{max} = 26.00^{\circ}$ $h = 0 \rightarrow 16$	C11-C1-N1-C4	-63.5 (5)	C33-C3-N1-C4	-56.2 (5
different en et en et en		C22-C2-N1-C1	53.9 (5)	C44-C4-N1-C1	-175.3 (4)
diffractometer		C22-C2-N1-C3	-65.3 (5)	C44—C4—N1—C2	63.2 (5)
$\omega/2\theta$ scans		C22-C2-N1-C4	173.5 (4)	C44-C4-N1-C3	- 56.1 (5)
Absorption correction:	$k = -9 \rightarrow 8$				

The low-temperature experiment was carried out using a Cryostream (Oxford Cryosystems) open-flow gas cryostat (Cosier & Glaser, 1986). *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988) was used for data collection and cell determination, and *TEXSAN* (Molecular Structure Corporation, 1989) was used for data reduction and the application of an absorption correction (North, Phillips & Mathews, 1968) based on 36 ψ scans of three reflections. The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1990), and refined by full-matrix least squares and prepared for publication using *CRYSTALS* (Watkin, Carruthers & Betteridge, 1993). *SHELXTL-Plus* (Sheldrick, 1989) was used for molecular graphics.

The Academy of Finland and the British Council are acknowledged for financial support to JK.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1122). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bates, P. S., Kataky, R. & Parker, D. (1994a). J. Chem. Soc. Perkin Trans. 2, pp. 669–691.
- Bates, P. S., Kataky, R. & Parker, D. (1994b). Analyst (London), 119, 181-186.
- Cosier, J. & Glaser, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Material Sciences. New York: Springer-Verlag.
- Sheldrick, G. M. (1989). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Vicente, B. R., Knop, O., Linden, A., Cameron, T. S. & Robertson, K. N. (1988). Can. J. Chem. 66, 3060–3069.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1993). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Refinement

 $[I > 3.0\sigma(I)]$

empirical

1.000

 $T_{\min} = 0.941, T_{\max} =$

2305 measured reflections

1068 observed reflections

1145 independent reflections

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.002$
R = 0.0489	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0517	$\Delta \rho_{\rm min} = -0.56 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	Extinction correction: none
1068 reflections	Atomic scattering factors
125 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = w'[1 - (\Delta F/6\sigma F)^2]^2$	
where w' is a five-term	
Chebyshev polynomial	
(Prince, 1982) for F_c with	
coefficients of 2.27, 1.51,	
2.35, 0.492 and 0.783	

 $l = -8 \rightarrow 8$

3 standard reflections

reflections

monitored every 150

intensity decay: 5.4%

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* a_i.a_j.$$

$$x \qquad y \qquad z \qquad U_{eq}$$
Cl1 0.5364 (2) 0.1269 (1) 0.3694 (2) 0.0266
O1 0.5470 (4) 0.0104 (6) 0.4535 (3) 0.0470
O2 0.5828 (7) 0.297 (1) 0.4009 (6) 0.0730
O3 0.4121 (7) 0.148 (1) 0.3011 (6) 0.0800
O4 0.5778 (5) 0.0405 (8) 0.3011 (4) 0.070
O2 0.6427 (8) 0.243 (1) 0.4213 (8) 0.0188
O33 0.437 (1) 0.245 (2) 0.348 (1) 0.0397
N1 0.9060 (3) 0.1206 (5) 0.1181 (3) 0.0226
C1 1.0298 (4) 0.1220 (6) 0.2058 (3) 0.0267
C2 0.8954 (4) -0.0075 (6) 0.0297 (3) 0.0320
C3 0.8222 (4) 0.0585 (6) 0.1641 (3) 0.0317
C4 0.8764 (4) 0.3094 (5) 0.0726 (3) 0.0277
C11 1.1259 (5) 0.1669 (9) 0.1707 (5) 0.0431
C22 0.9356 (7) -0.2004 (8) 0.0641 (5) 0.0497
C3 0.8156 (6) 0.180 (1) 0.2473 (5) 0.0487
C44 0.7517 (5) 0.3345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.03345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.03345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.3345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.3345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.03345 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.03457 (9) -0.0102 (5) 0.03437
C44 0.7517 (5) 0.03457 (9) -0.0102 (5) 0.03457
C44 0.7517 (5) 0.03457 (9) -0.0102 (5) 0.03457
C44 0.7517 (5) 0.03457 (9) -0.0102 (5) 0.03457
C44 0.7517 (5) 0.03457 (9) -0.0102 (5) 0.013457
C44 0.7517 (5) 0.01457
C45 0.7517 (5

Table 2. Selected geometric parameters (Å, °)

C11-01	1.420 (4)	N1-C3	1.515 (5)	
Cl1—O2	1.383 (8)	N1-C4	1.521 (5)	
Cl1-03	1.452 (8)	C1—C11	1.515 (7)	